Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Commun Biol ; 4(1): 1240, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493232

ABSTRACT

Circular tandem repeat proteins ('cTRPs') are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Protein Engineering/methods , Proteins/chemistry , Proteins/metabolism , SARS-CoV-2/metabolism , Tandem Repeat Sequences , Amino Acid Sequence , COVID-19/virology , Computer Simulation , Crystallization , HEK293 Cells , Humans , Models, Molecular , Neutralization Tests , Protein Binding , Protein Domains , Protein Folding , Protein Structure, Secondary , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1171258

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic following its initial emergence in China. SARS-CoV-2 has a positive-sense single-stranded RNA virus genome of around 30Kb. Using next-generation sequencing technologies, a large number of SARS-CoV-2 genomes are being sequenced at an unprecedented rate and being deposited in public repositories. For the de novo assembly of the SARS-CoV-2 genomes, a myriad of assemblers is being used, although their impact on the assembly quality has not been characterized for this virus. In this study, we aim to understand the variabilities on assembly qualities due to the choice of the assemblers. RESULTS: We performed 6648 de novo assemblies of 416 SARS-CoV-2 samples using eight different assemblers with different k-mer lengths. We used Illumina paired-end sequencing reads and compared the assembly quality of those assemblers. We showed that the choice of assembler plays a significant role in reconstructing the SARS-CoV-2 genome. Two metagenomic assemblers, e.g. MEGAHIT and metaSPAdes, performed better compared with others in most of the assembly quality metrics including, recovery of a larger fraction of the genome, constructing larger contigs and higher N50, NA50 values, etc. We showed that at least 09% (259/2873) of the variants present in the assemblies between MEGAHIT and metaSPAdes are unique to one of the assembly methods. CONCLUSION: Our analyses indicate the critical role of assembly methods for assembling SARS-CoV-2 genome using short reads and their impact on variant characterization. This study could help guide future studies to determine the best-suited assembler for the de novo assembly of virus genomes.


Subject(s)
Genome, Viral , Mutation , SARS-CoV-2/genetics , COVID-19/virology , Databases, Genetic , Tandem Repeat Sequences
4.
Lancet Infect Dis ; 21(8): 1107-1119, 2021 08.
Article in English | MEDLINE | ID: covidwho-1155669

ABSTRACT

BACKGROUND: Although several COVID-19 vaccines have been developed so far, they will not be sufficient to meet the global demand. Development of a wider range of vaccines, with different mechanisms of action, could help control the spread of SARS-CoV-2 globally. We developed a protein subunit vaccine against COVID-19 using a dimeric form of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein as the antigen. We aimed to assess the safety and immunogenicity of this vaccine, ZF2001, and determine the appropriate dose and schedule for an efficacy study. METHODS: We did two randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Phase 1 was done at two university hospitals in Chongqing and Beijing, China, and phase 2 was done at the Hunan Provincial Center for Disease Control and Prevention in Xiangtan, China. Healthy adults aged 18-59 years, without a history of SARS-CoV or SARS-CoV-2 infection, an RT-PCR-positive test result for SARS-CoV-2, a history of contact with confirmed or suspected COVID-19 cases, and severe allergies to any component of the vaccine were eligible for enrolment. In phase 1, participants were randomly assigned (2:2:1) to receive three doses of the vaccine (25 µg or 50 µg) or placebo intramuscularly, 30 days apart. In phase 2, participants were randomly assigned (1:1:1:1:1:1) to receive the vaccine (25 µg or 50 µg) or placebo intramuscularly, 30 days apart, in either a two-dose schedule or a three-dose schedule. Investigators, participants, and the laboratory team were masked to group allocation. For phase 1, the primary outcome was safety, measured by the occurrence of adverse events and serious adverse events. For phase 2, the primary outcome was safety and immunogenicity (the seroconversion rate and the magnitude, in geometric mean titres [GMTs], of SARS-CoV-2-neutralising antibodies). Analyses were done on an intention-to-treat and per-protocol basis. These trials are registered with ClinicalTrials.gov (NCT04445194 and NCT04466085) and participant follow-up is ongoing. FINDINGS: Between June 22 and July 3, 2020, 50 participants were enrolled into the phase 1 trial and randomly assigned to receive three doses of placebo (n=10), the 25 µg vaccine (n=20), or the 50 µg vaccine (n=20). The mean age of participants was 32·6 (SD 9·4) years. Between July 12 and July 17, 2020, 900 participants were enrolled into the phase 2 trial and randomly assigned to receive two doses of placebo (n=150), 25 µg vaccine (n=150), or 50 µg vaccine (n=150), or three doses of placebo (n=150), 25 µg vaccine (n=150), or 50 µg vaccine (n=150). The mean age of participants was 43·5 (SD 9·2) years. In both phase 1 and phase 2, adverse events reported within 30 days after vaccination were mild or moderate (grade 1 or 2) in most cases (phase 1: six [60%] of ten participants in the placebo group, 14 [70%] of 20 in the 25 µg group, and 18 [90%] of 20 in the 50 µg group; phase 2: 37 [25%] of 150 in the two-dose placebo group, 43 [29%] of 150 in the two-dose 25 µg group, 50 [33%] of 150 in the two-dose 50 µg group, 47 [31%] of 150 in the three-dose placebo group, 72 [48%] of 150 in the three-dose 25 µg group, and 65 [43%] of 150 in the three-dose 50 µg group). In phase 1, two (10%) grade 3 or worse adverse events were reported in the 50 µg group. In phase 2, grade 3 or worse adverse events were reported by 18 participants (four [3%] in the two-dose 25 µg vaccine group, two [1%] in the two-dose 50 µg vaccine group, two [1%] in the three-dose placebo group, four [3%] in the three-dose 25 µg vaccine group, and six [4%] in the three-dose 50 µg vaccine group), and 11 were considered vaccine related (two [1%] in the two-dose 25 µg vaccine group, one [1%] in the two-dose 50 µg vaccine group, one [1%] in the three-dose placebo group, two [1%] in the three-dose 25 µg vaccine group, and five [3%] in the three-dose 50 µg vaccine group); seven participants reported serious adverse events (one [1%] in the two-dose 25 µg vaccine group, one [1%] in the two-dose 50 µg vaccine group, two [1%] in the three-dose placebo group, one [1%] in the three-dose 25 µg vaccine group, and two [1%] in the three-dose 50 µg vaccine group), but none was considered vaccine related. In phase 2, on the two-dose schedule, seroconversion rates of neutralising antibodies 14 days after the second dose were 76% (114 of 150 participants) in the 25 µg group and 72% (108 of 150) in the 50 µg group; on the three-dose schedule, seroconversion rates of neutralising antibodies 14 days after the third dose were 97% (143 of 148 participants) in the 25 µg group and 93% (138 of 148) in the 50 µg group. In the two-dose groups in phase 2, the SARS-CoV-2-neutralising GMTs 14 days after the second dose were 17·7 (95% CI 13·6-23·1) in the 25 µg group and 14·1 (10·8-18·3) in the 50 µg group. In the three-dose groups in phase 2, the SARS-CoV-2-neutralising GMTs 14 days after the third dose were 102·5 (95% CI 81·8-128·5) in the 25 µg group and 69·1 (53·0-90·0) in the 50 µg group. INTERPRETATION: The protein subunit vaccine ZF2001 appears to be well tolerated and immunogenic. The safety and immunogenicity data from the phase 1 and 2 trials support the use of the 25 µg dose in a three-dose schedule in an ongoing phase 3 trial for large-scale evaluation of ZF2001's safety and efficacy. FUNDING: National Program on Key Research Project of China, National Science and Technology Major Projects of Drug Discovery, Strategic Priority Research Program of the Chinese Academy of Sciences, and Anhui Zhifei Longcom Biopharmaceutical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , Double-Blind Method , Female , Humans , Male , Middle Aged , Protein Multimerization , Tandem Repeat Sequences , Vaccination/adverse effects , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL